What have we learned from elliptic flow at RHIC?

Hiroshi Masui / LBNL

NSD monday morning meeting on Nov. 2, 2009

Thanks to

P. Filip, R. Lednicky, B. Mohanty, A. M. Poskanzer,

S. S. Shi, A. H. Tang and N. Xu

Main messages

- Create hot/dense medium and understand properties
 - √ thermalization
 - √ deconfinement
 - √ transport coefficients
 - **√** ...

- Success of hydrodynamical models
- Partonic collectivity
- Stronger collectivity in central collisions
- 'Viscosity' corrections

Outline

- 1. Introduction
- 2. What have we learned at RHIC?
- 3. What can we learn from future v₂ measurements at RHIC?
- 4. Conclusions

Why study elliptic flow?

- Initial spatial anisotropy (eccentricity ε) → final momentum anisotropy v₂
 - ➡ Interactions among constituents
 - → Degree of thermalization, EOS, d.o.f, transport coefficients
- Signal is self-quenching with time
 - → Probe to the early stage
- Sensitive to the early 'partonic' collision dynamics

H. Masui / LBNL 4 /16

How to measure anisotropic flow?

$$\frac{dN}{d\phi} \propto 1 + 2v_1 \cos(\phi - \Psi_{RP}) + 2v_2 \cos(2[\phi - \Psi_{RP}]) + \dots$$

 ϕ : azimuthal angle of particles

 Ψ_{RP} : azimuth of reaction plane

Azimuthal anisotropy

- √ Fourier expansion of azimuthal particle distributions with respect to the reaction plane
- ✓ Second coefficient = v₂
- \checkmark v₂ = 0.1 (10%) → 1.2/0.8 = 50% more particles in "in-plane" direction than in "out-of-plane"

PHENIX vs STAR

- Central arm: $|\Delta \phi| < \pi$, $|\eta| < 0.35$
- photon, electrons
- → Limited acceptance, rare probes

- Main TPC: Full azimuth, |η|<1
- (Multi-)strange hadrons (K⁰s,
 φ, Λ, Ξ, Ω, ...), Resonances
- → Large acceptance

What have we learned at RHIC?

Success of ideal hydrodynamics

STAR: QM09, DNP09

- Ideal hydrodynamic models work for p_T < 1 GeV/c
- ✓ Mass ordering of v_2 , smaller v_2 for heavy hadrons \rightarrow radial flow
- ✓ need early thermalization, τ ~ 1 fm/c
- What can we learn from higher p_T?

Success of ideal hydrodynamics

STAR: QM09, DNP09

Baryons

Mesons

- Ideal hydrodynamic models work for p_T < 1 GeV/c
- ✓ Mass ordering of v_2 , smaller v_2 for heavy hadrons \rightarrow radial flow
- ✓ need early thermalization, τ ~ 1 fm/c
- What can we learn from higher p_T?

Partonic collectivity

- Number of quark scaling among measured hadrons
 - √ v₂ scales by number of quarks for p_T > 2 GeV/c
 - ✓ Confirmed for multi-strange hadrons; ϕ and Ω
 - Collectivity developed in the early partonic matter
 - Deconfinement

Stronger flow in central collisions

- Number of quark scaling holds for each centrality
- Stronger collectivity in central collisions
 - ✓ Collectivity is driven by the eccentricity and system size

'Viscosity' corrections

M. Luzum and P. Romatschke, PRC78, 034915 (2008)

- Measured v₂ is sensitive to the viscosity corrections
 - ✓ prefer finite but small shear viscosity to entropy density ratio of medium
 - important constraint on the transport coefficients
 - √ Caveats: hadronic rescattering, initial conditions, EOS, ...

What can we learn from future v₂ measurements at RHIC? U + U collisions di-leptons

Why U + U collisions?

- U nucleus is heavier than Au, and naturally deformed
- Increase transverse number density & duration time
 - √ density increases ~35% in central "tip-tip" U + U compared to the spherical Au + Au C. Nepali et al., Phys. Rev. C73, 034911 (2006)
 - √ freeze-out occurs ~30% later in central "body-body" U + U than in Pb + Pb at b = 7 fm
 P. F. Kolb et al., Phys. Rev. C62, 054909 (2000)

Effect of deformation

Results in U + U collisions are averaged over all possible orientations

- Increase v₂ with respect to the participant plane at most central
 - ✓ Due to the deformation of uranium
 - ✓ Deformation → larger geometrical anisotropy → larger v₂
 - √ Caveats
 - Collisions dynamics need to be taken into account
- U + U collisions will be possible at RHIC in 2012

Di-leptons

p_T, centrality

PHENIX: arXiv:0706.0304

- Di-lepton v₂ measurements (vs mass, p_T, centrality)
 - ✓ Direct radiation from the medium, no strong interactions
 - → Probe to the deconfinement, thermalization
- PHENIX: HBD, STAR: Full barrel TOF

Conclusions

- Elliptic flow has played a major role in understanding the properties of the medium created at RHIC
 - √ Hydrodynamical models → radial flow, early thermalization
 - ✓ Partonic collectivity → deconfinement
 - ✓ Stronger collectivity in central collisions \rightarrow $v_2 = \varepsilon \times f(system size)$
 - ✓ Provide important constraint on transport coefficients
- Future v₂ measurements would shed more light on the collision dynamics in heavy ion collisions
 - √ U + U collisions, v₂ for di-leptons
- Many other important measurements
 - √ heavy flavors (charm & bottom quarks), direct (thermal) photon
 - ✓ Other harmonics (v₁, v₄ ...), v₂ fluctuation